Sensordatenfusion zur Robusten und präzisen EKF Lokalisierung von mobilen Robotern
Diese Arbeit beschreibt einen Ansatz zur Lokalisierung von Mobilrobotern mittels der Kombination eines Laserscanners mit monokularem Video. Das Verfahren ist merkmalsbasiert und benutzt ein erweitertes Kalman filter (EKF) zur Datenfusion und Positionsschätzung. Die Umgebungsmerkmale sind Liniensegme...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Web Resource |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diese Arbeit beschreibt einen Ansatz zur Lokalisierung von Mobilrobotern mittels der Kombination eines Laserscanners mit monokularem Video. Das Verfahren ist merkmalsbasiert und benutzt ein erweitertes Kalman filter (EKF) zur Datenfusion und Positionsschätzung. Die Umgebungsmerkmale sind Liniensegmente für den Laserscanner und vertikale Kanten für die Kamera. Physikalisch gut basierte Unsicherheitsmodelle beider Sensoren werden eingesetzt und bei Sensorkalibration und Merkmalsextraktion in Betracht gezogen. Dies liefert die geschätzten ersten zwei Momente der Merkmalsvektoren. Die Experimente, die auf einem vollständig autonomen Roboter durchgeführt wurden, zielten auf zwei Fragestellungen ab: In welchem Mass kann das Hinzufügen video-basierter Umgebungsinformation die Navigation hinsichtlich Robustheit und Präzision verbessern? Die dazu ausgeführten Experimente zeigen, dass gerade in schwierigen Lokalisierungsszenarien wie lange Korridore, die Bildinformation einen unerlässlichen Beitrag liefert und in der Lage ist, die Positionsschätzung im allgemeinen und besonders in der Orientierung zu verbessern. |
---|---|
DOI: | 10.1007/978-3-642-59708-4_11 |