Visualisation of magnetic domain structures and magnetisation processes in Goss-oriented, high permeability steels using neutron grating interferometry

Industrial transformers cores are built from stacked sheets of an iron silicon alloy, called laminations. The magnetic domain structures of these highly anisotropic electrical steels with a sharp (110)[001]-texture, the so-called Gosstexture, determines the magnetic properties of transformers. Commo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Betz, Benedikt Karl-Josef Gerhard
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Industrial transformers cores are built from stacked sheets of an iron silicon alloy, called laminations. The magnetic domain structures of these highly anisotropic electrical steels with a sharp (110)[001]-texture, the so-called Gosstexture, determines the magnetic properties of transformers. Commonly used investigation techniques for these laminations are inductive B-H-measurements. This technique reveals global magnetic properties such as hysteresis, remanence, saturation and losses. Locally resolved information about the underlying domain structure cannot be obtained. In this thesis, the neutron grating interferometer (nGI) is used to investigate the domain structures in Goss-oriented (GO) electrical steels at the Swiss Spallation Neutron Source using the cold neutron imaging facility ICON. In contrast to the attenuation based transmission image, the dark-field image (DFI) is related to multiple refraction of unpolarised neutrons at magnetic domain walls. Thereby the use of the DFI allows for the visualisation of bulk magnetic domain structures in two and three dimensions with a spatial resolution of down to 70 um in a field of view of 64mm x 64mm. The DFI is used for the visualisation of the locally resolved response of the bulk magnetic domain structures under the influence of externally applied magnetic fields. In the first part, the domain formation and growth along the initial magnetisation curve (0-6000 A/m) up to saturation in static DC magnetic fields was studied. For decreasing field values, the visualisation of the recurrence of the hysteretic domain structure down to the remanent (0 A/m) state is given. A correlation of the grain orientation and the corresponding basic and supplementary domain structure is given. In the second part, the DFI is used to investigate the response of magnetic domain walls to dynamic AC magnetic excitations. The visualisation of the domain wall motion under influence of alternating magnetic fields is performed. In detail, scans combining varying levels of an offset DC (0-30 A/m), oscillation amplitude A (0-1500 A/m), and oscillation frequency f (0-200 Hz) are conducted. By increasing the amplitude while maintaining constant values of DC and f, the transition from a frozen domain wall structure to a mobile one is recorded. Vice versa, increasing f while keeping A and DC constant led to the reverse transition from a mobile domain wall structure into a frozen one. It is shown that varying both, A and f shifts the pos
DOI:10.5075/epfl-thesis-7002