STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers

We report Stimulated Emission Depletion (STED) imaging of green fluorescent nanodiamonds containing Nitrogen-Vacancy-Nitrogen (NVN) centers with a resolution of 70 nm using a commercial microscope. Nanodiamonds have been demonstrated to have the potential to be excellent cellular biomarkers thanks t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Laporte, Grégoire, Psaltis, Demetri
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report Stimulated Emission Depletion (STED) imaging of green fluorescent nanodiamonds containing Nitrogen-Vacancy-Nitrogen (NVN) centers with a resolution of 70 nm using a commercial microscope. Nanodiamonds have been demonstrated to have the potential to be excellent cellular biomarkers thanks to their low toxicity and nonbleaching fluorescence, and are especially appealing for superresolution imaging technique like STED microscopy. However, only red fluorescent nanodiamonds containing Nitrogen-Vacancy (NV) centers have been used with STED microscopy so far. The existence of only one color nonbleaching center limits the possible observations, for instance it complicates spatial correlation studies with STED. To provide a nonbleaching probe in a different color, we characterize here the optical properties of the NVN defect for STED imaging. We demonstrate STED imaging of the green fluorescent nanodiamonds containing NVN centers, opening the door for long term two-color STED observation. Furthermore we exemplify the use of green nanodiamonds as a second color nonbleaching STED biomarker by imaging 70 nm fluorescent crystals up taken into HeLa cells. (C) 2015 Optical Society of America
DOI:10.1364/Boe.7.000034