MAP Estimators for Self-Similar Sparse Stochastic Models
We consider the reconstruction of multi-dimensional signals from noisy samples. The problem is formulated within the framework of the theory of continuous-domain sparse stochastic processes. In particular, we study the fractional Laplacian as the whitening operator specifying the correlation structu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Web Resource |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the reconstruction of multi-dimensional signals from noisy samples. The problem is formulated within the framework of the theory of continuous-domain sparse stochastic processes. In particular, we study the fractional Laplacian as the whitening operator specifying the correlation structure of the model. We then derive a class of MAP estimators where the priors are confined to the family of infinitely divisible distributions. Finally, we provide simulations where the derived estimators are compared against total-variation (TV) denoising. |
---|