Modeling and Simulation of Energy Efficient Milling Process Plans for Prismatic Parts
The milling process has been continuously optimized from many aspects: forces, velocities, stability, quality. Numerous papers have been published that report results in the domain of toolpath optimization with criteria such as raising the quality of the machined part, obtaining a stable machining p...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Web Resource |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The milling process has been continuously optimized from many aspects: forces, velocities, stability, quality. Numerous papers have been published that report results in the domain of toolpath optimization with criteria such as raising the quality of the machined part, obtaining a stable machining process and maximizing the material removal rate. However, only recently researchers have started investigating the ecological impact of machining processes. With the constantly increasing prices of electrical energy and all environmental problems caused by the production and waste of the energy, it has become indispensable to look for ways to optimize machining processes from the energy consumption aspect, too. It is in this domain, then, that the work described in this dissertation contributes – to add a new criterion for the sustainable operation of machine tools: reducing the energy consumption during the use phase of the machine tool. The total energy spent in a machining process is the sum of power spent by all machine tool subsystems multiplied by the time that they are working. Therefore, the operating strategies for increasing energy efficiency for the high-speed machining processes must be oriented towards the reduction of the total machining time (productive and unproductive) and reduction of instantaneous consumed power in the machining process or, preferably, both. There are many causes for milling process time and energy inefficiency. The major sources of potential time reductions include: (i) the issues related to the geometry and topology of the toolpath („air-time”, overlapping segments, gouge and uncut regions, orientation of the toolpath), (ii) the issues related to the kinematics of the feed drives (the feed velocity/acceleration profile). The possible domains for power consumption reduction are related to the forces that exist in the machining process (cutting, inertial, gravitational and friction forces). The power invested to overcome the cutting force is necessary for the machining process but its consumption should be optimized through constant cutting engagement and feedrate scheduling strategies. The other forces are responsible for the pure mechanical power loss and they should be minimized. The optimization variables for inertial and gravitational forces include the feed motion profile and moving mass configuration, while friction losses are load and/or velocity dependent. In addition, there are some power losses in the electric compo |
---|---|
DOI: | 10.5075/epfl-thesis-5425 |