On the facet-to-facet property of solutions to convex parametric quadratic programs

In some of the recently developed algorithms for convex parametric quadratic programs it is implicitly assumed that the intersection of the closures of two adjacent critical regions is a facet of both closures; this will be referred to as the facet-to-facet property. It is shown by an example, whose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Spjotvold, J, Kerrigan, E, Jones, Colin, Tondel, P, Johansen, T
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Spjotvold, J
Kerrigan, E
Jones, Colin
Tondel, P
Johansen, T
description In some of the recently developed algorithms for convex parametric quadratic programs it is implicitly assumed that the intersection of the closures of two adjacent critical regions is a facet of both closures; this will be referred to as the facet-to-facet property. It is shown by an example, whose solution is unique, that the facet-to-facet property does not hold in general. Consequently, some existing algorithms cannot guarantee that the entire parameter space will be explored. A simple modification, applicable to several existing algorithms, is presented for the purpose of overcoming this problem. Numerical results indicate that, compared to the original algorithms for parametric quadratic programs, the proposed method has lower computational complexity for problems whose solutions consist of a large number of critical regions.
doi_str_mv 10.1016/j.automatica.2006.06.026
format Web Resource
fullrecord <record><control><sourceid>epfl_F1K</sourceid><recordid>TN_cdi_epfl_infoscience_oai_infoscience_tind_io_164237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_infoscience_tind_io_164237</sourcerecordid><originalsourceid>FETCH-epfl_infoscience_oai_infoscience_tind_io_1642373</originalsourceid><addsrcrecordid>eNqdjE0KwjAQhbNxIeod5gKN_ZF4AFHcudB9GdKJRtpMTaait9eKG7fCg_cD31MKilwXeWGWV42DcIfiLeoyz40eVZqpOh4CyIXAoSXJhLNPgD5yT1GewA4St4N4DgmEwXK40wN6jNiRRG_hNmATx-cROr_nNFcTh22ixddnyuy2p80-o961tQ-Ok_UULNWM_qeLD03tuS7MqqzW1d_gCzmkVLw</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>web_resource</recordtype></control><display><type>web_resource</type><title>On the facet-to-facet property of solutions to convex parametric quadratic programs</title><source>Infoscience: EPF Lausanne</source><creator>Spjotvold, J ; Kerrigan, E ; Jones, Colin ; Tondel, P ; Johansen, T</creator><creatorcontrib>Spjotvold, J ; Kerrigan, E ; Jones, Colin ; Tondel, P ; Johansen, T</creatorcontrib><description>In some of the recently developed algorithms for convex parametric quadratic programs it is implicitly assumed that the intersection of the closures of two adjacent critical regions is a facet of both closures; this will be referred to as the facet-to-facet property. It is shown by an example, whose solution is unique, that the facet-to-facet property does not hold in general. Consequently, some existing algorithms cannot guarantee that the entire parameter space will be explored. A simple modification, applicable to several existing algorithms, is presented for the purpose of overcoming this problem. Numerical results indicate that, compared to the original algorithms for parametric quadratic programs, the proposed method has lower computational complexity for problems whose solutions consist of a large number of critical regions.</description><identifier>DOI: 10.1016/j.automatica.2006.06.026</identifier><language>eng</language><publisher>Elsevier</publisher><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27837</link.rule.ids><linktorsrc>$$Uhttp://infoscience.epfl.ch/record/164237$$EView_record_in_EPF_Lausanne$$FView_record_in_$$GEPF_Lausanne$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Spjotvold, J</creatorcontrib><creatorcontrib>Kerrigan, E</creatorcontrib><creatorcontrib>Jones, Colin</creatorcontrib><creatorcontrib>Tondel, P</creatorcontrib><creatorcontrib>Johansen, T</creatorcontrib><title>On the facet-to-facet property of solutions to convex parametric quadratic programs</title><description>In some of the recently developed algorithms for convex parametric quadratic programs it is implicitly assumed that the intersection of the closures of two adjacent critical regions is a facet of both closures; this will be referred to as the facet-to-facet property. It is shown by an example, whose solution is unique, that the facet-to-facet property does not hold in general. Consequently, some existing algorithms cannot guarantee that the entire parameter space will be explored. A simple modification, applicable to several existing algorithms, is presented for the purpose of overcoming this problem. Numerical results indicate that, compared to the original algorithms for parametric quadratic programs, the proposed method has lower computational complexity for problems whose solutions consist of a large number of critical regions.</description><fulltext>true</fulltext><rsrctype>web_resource</rsrctype><recordtype>web_resource</recordtype><sourceid>F1K</sourceid><recordid>eNqdjE0KwjAQhbNxIeod5gKN_ZF4AFHcudB9GdKJRtpMTaait9eKG7fCg_cD31MKilwXeWGWV42DcIfiLeoyz40eVZqpOh4CyIXAoSXJhLNPgD5yT1GewA4St4N4DgmEwXK40wN6jNiRRG_hNmATx-cROr_nNFcTh22ixddnyuy2p80-o961tQ-Ok_UULNWM_qeLD03tuS7MqqzW1d_gCzmkVLw</recordid><creator>Spjotvold, J</creator><creator>Kerrigan, E</creator><creator>Jones, Colin</creator><creator>Tondel, P</creator><creator>Johansen, T</creator><general>Elsevier</general><scope>F1K</scope></search><sort><title>On the facet-to-facet property of solutions to convex parametric quadratic programs</title><author>Spjotvold, J ; Kerrigan, E ; Jones, Colin ; Tondel, P ; Johansen, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epfl_infoscience_oai_infoscience_tind_io_1642373</frbrgroupid><rsrctype>web_resources</rsrctype><prefilter>web_resources</prefilter><language>eng</language><toplevel>online_resources</toplevel><creatorcontrib>Spjotvold, J</creatorcontrib><creatorcontrib>Kerrigan, E</creatorcontrib><creatorcontrib>Jones, Colin</creatorcontrib><creatorcontrib>Tondel, P</creatorcontrib><creatorcontrib>Johansen, T</creatorcontrib><collection>Infoscience: EPF Lausanne</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spjotvold, J</au><au>Kerrigan, E</au><au>Jones, Colin</au><au>Tondel, P</au><au>Johansen, T</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><btitle>On the facet-to-facet property of solutions to convex parametric quadratic programs</btitle><abstract>In some of the recently developed algorithms for convex parametric quadratic programs it is implicitly assumed that the intersection of the closures of two adjacent critical regions is a facet of both closures; this will be referred to as the facet-to-facet property. It is shown by an example, whose solution is unique, that the facet-to-facet property does not hold in general. Consequently, some existing algorithms cannot guarantee that the entire parameter space will be explored. A simple modification, applicable to several existing algorithms, is presented for the purpose of overcoming this problem. Numerical results indicate that, compared to the original algorithms for parametric quadratic programs, the proposed method has lower computational complexity for problems whose solutions consist of a large number of critical regions.</abstract><pub>Elsevier</pub><doi>10.1016/j.automatica.2006.06.026</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1016/j.automatica.2006.06.026
ispartof
issn
language eng
recordid cdi_epfl_infoscience_oai_infoscience_tind_io_164237
source Infoscience: EPF Lausanne
title On the facet-to-facet property of solutions to convex parametric quadratic programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epfl_F1K&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=On%20the%20facet-to-facet%20property%20of%20solutions%20to%20convex%20parametric%20quadratic%20programs&rft.au=Spjotvold,%20J&rft_id=info:doi/10.1016/j.automatica.2006.06.026&rft_dat=%3Cepfl_F1K%3Eoai_infoscience_tind_io_164237%3C/epfl_F1K%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true