On the facet-to-facet property of solutions to convex parametric quadratic programs

In some of the recently developed algorithms for convex parametric quadratic programs it is implicitly assumed that the intersection of the closures of two adjacent critical regions is a facet of both closures; this will be referred to as the facet-to-facet property. It is shown by an example, whose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Spjotvold, J, Kerrigan, E, Jones, Colin, Tondel, P, Johansen, T
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In some of the recently developed algorithms for convex parametric quadratic programs it is implicitly assumed that the intersection of the closures of two adjacent critical regions is a facet of both closures; this will be referred to as the facet-to-facet property. It is shown by an example, whose solution is unique, that the facet-to-facet property does not hold in general. Consequently, some existing algorithms cannot guarantee that the entire parameter space will be explored. A simple modification, applicable to several existing algorithms, is presented for the purpose of overcoming this problem. Numerical results indicate that, compared to the original algorithms for parametric quadratic programs, the proposed method has lower computational complexity for problems whose solutions consist of a large number of critical regions.
DOI:10.1016/j.automatica.2006.06.026