EEG microstates and the schizophrenia spectrum: evidence for compensation mechanisms

Introduction: Electroencephalogram (EEG) microstates are on-going scalp potential configurations that remain stable for around 80 ms (1). Four recurrent and dominant classes of microstates (labeled A-D) are observed in resting-state EEG, explaining around 65-84 % of the global variance of the data (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ramos da Cruz, Janir Nuno, Favrod, Ophélie, Roinishvili, Maya, Chkonia, Eka, Brand, Andreas, Mohr, Christine, Figueiredo, Patrícia, Herzog, Michael
Format: Web Resource
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Electroencephalogram (EEG) microstates are on-going scalp potential configurations that remain stable for around 80 ms (1). Four recurrent and dominant classes of microstates (labeled A-D) are observed in resting-state EEG, explaining around 65-84 % of the global variance of the data (2). Several studies have reported abnormalities in the dynamics of EEG microstates in schizophrenia patients (3). Similar abnormalities have also been observed in adolescents with 22q11.2 deletion syndrome, a population that has a 30% risk of developing psychosis (4). These results prompted researchers to suggest that the abnormal dynamics of EEG microstates is a potential endophenotype for schizophrenia. For endophenotypes, it is important that unaffected relatives also show the abnormal dynamics (5). To the best of our knowledge, no study analyzed the resting dynamics of these four EEG microstate classes in relatives of schizophrenia patients. Methods: We examined 5 minutes resting-state EEG data of 260 participants collected across experiments, and we estimated the dynamics of the four canonical EEG microstates using Cartool (6). In experiment 1, to investigate whether unaffected siblings of schizophrenia patients show EEG microstates abnormalities, we tested 38 unaffected siblings of schizophrenia patients, 89 schizophrenia patients, and 69 healthy controls. In experiment 2, to assess whether these abnormalities are also present in people with high schizotypal traits, we tested 42 healthy students scoring either high (n=22) or low (n=20) in schizotypal traits. In experiment 3, to investigate whether microstates abnormalities are already present at the beginning of the disorder, we tested 22 patients with first episodes of psychosis (FEP). We also tested the FEP patients two more times throughout one year to assess whether the microstates dynamics change with disease progression. For each group of participants, we identified four microstates classes and labeled them A-D according to their similarities to the previously reported microstate class topographies (2). For each subject, three per-class microstate parameters were computed: mean duration (in ms), time coverage (in %), and frequency of occurrence (occurrence). Results: In line with previous studies, schizophrenia patients showed increased presence of the microstate class C and decreased presence of the microstate class D compared to controls (Figure 1). Siblings showed similar patterns of microstates c