A Lefschetz fixed-point formula for certain orbifold C-algebras

Using Poincaré duality in K-theory, we state and prove a Lefschetz fixed point formula for endomorphisms of crossed product C*-algebras C0(X) ⋊ G coming from covariant pairs. Here G is assumed countable, X a manifold, and X ⋊ G cocompact and proper. The formula in question describes the graded trace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of noncommutative geometry 2010, Vol.4 (1), p.125-155
Hauptverfasser: Echterhoff, Siegfried, Emerson, Heath, Kim, Hyun Jeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 1
container_start_page 125
container_title Journal of noncommutative geometry
container_volume 4
creator Echterhoff, Siegfried
Emerson, Heath
Kim, Hyun Jeong
description Using Poincaré duality in K-theory, we state and prove a Lefschetz fixed point formula for endomorphisms of crossed product C*-algebras C0(X) ⋊ G coming from covariant pairs. Here G is assumed countable, X a manifold, and X ⋊ G cocompact and proper. The formula in question describes the graded trace of the map induced by the automorphism on K-theory of C0(X) ⋊ G, i.e. the Lefschetz number, in terms of fixed orbits of the spatial map. Each fixed orbit contributes to the Lefschetz number by a formula involving twisted conjugacy classes of the corresponding isotropy group, and a secondary construction that associates, by way of index theory, a group character to any finite group action on a Euclidean space commuting with a given invertible matrix.
doi_str_mv 10.4171/JNCG/51
format Article
fullrecord <record><control><sourceid>ems</sourceid><recordid>TN_cdi_ems_journals_10_4171_JNCG_51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JNCG_51</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-3478d048099eb31d01aa2f7e56bef17317145429f590204e749b7022d812b3d83</originalsourceid><addsrcrecordid>eNo9j01LxDAURYMoOI7iXwi4jvNePppkJUPRUSm60XVJmkQ7dFppOiD-eqc4uDp3de89hFwj3ErUuHp-KTcrhSdkgUWBrLAFnP5nxc_JRc5bACWNNgtyt6ZVTLn5jNMPTe13DOxraPuJpmHc7Ts3kzZxnFzb02H0bRq6QEvmuo_oR5cvyVlyXY5XRy7J-8P9W_nIqtfNU7muWMMtn5iQ2gSQBqyNXmAAdI4nHVXhY0ItDselktwmZYGDjFpar4HzYJB7EYxYkpu_3rjL9XbYj_1hrUaoZ-d6dq4Vil9EfEcU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Lefschetz fixed-point formula for certain orbifold C-algebras</title><source>European Mathematical Society Publishing House</source><creator>Echterhoff, Siegfried ; Emerson, Heath ; Kim, Hyun Jeong</creator><creatorcontrib>Echterhoff, Siegfried ; Emerson, Heath ; Kim, Hyun Jeong</creatorcontrib><description>Using Poincaré duality in K-theory, we state and prove a Lefschetz fixed point formula for endomorphisms of crossed product C*-algebras C0(X) ⋊ G coming from covariant pairs. Here G is assumed countable, X a manifold, and X ⋊ G cocompact and proper. The formula in question describes the graded trace of the map induced by the automorphism on K-theory of C0(X) ⋊ G, i.e. the Lefschetz number, in terms of fixed orbits of the spatial map. Each fixed orbit contributes to the Lefschetz number by a formula involving twisted conjugacy classes of the corresponding isotropy group, and a secondary construction that associates, by way of index theory, a group character to any finite group action on a Euclidean space commuting with a given invertible matrix.</description><identifier>ISSN: 1661-6952</identifier><identifier>EISSN: 1661-6960</identifier><identifier>DOI: 10.4171/JNCG/51</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Functional analysis ; K$-theory</subject><ispartof>Journal of noncommutative geometry, 2010, Vol.4 (1), p.125-155</ispartof><rights>European Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-3478d048099eb31d01aa2f7e56bef17317145429f590204e749b7022d812b3d83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,24053,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Echterhoff, Siegfried</creatorcontrib><creatorcontrib>Emerson, Heath</creatorcontrib><creatorcontrib>Kim, Hyun Jeong</creatorcontrib><title>A Lefschetz fixed-point formula for certain orbifold C-algebras</title><title>Journal of noncommutative geometry</title><addtitle>J. Noncommut. Geom</addtitle><description>Using Poincaré duality in K-theory, we state and prove a Lefschetz fixed point formula for endomorphisms of crossed product C*-algebras C0(X) ⋊ G coming from covariant pairs. Here G is assumed countable, X a manifold, and X ⋊ G cocompact and proper. The formula in question describes the graded trace of the map induced by the automorphism on K-theory of C0(X) ⋊ G, i.e. the Lefschetz number, in terms of fixed orbits of the spatial map. Each fixed orbit contributes to the Lefschetz number by a formula involving twisted conjugacy classes of the corresponding isotropy group, and a secondary construction that associates, by way of index theory, a group character to any finite group action on a Euclidean space commuting with a given invertible matrix.</description><subject>Functional analysis</subject><subject>K$-theory</subject><issn>1661-6952</issn><issn>1661-6960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9j01LxDAURYMoOI7iXwi4jvNePppkJUPRUSm60XVJmkQ7dFppOiD-eqc4uDp3de89hFwj3ErUuHp-KTcrhSdkgUWBrLAFnP5nxc_JRc5bACWNNgtyt6ZVTLn5jNMPTe13DOxraPuJpmHc7Ts3kzZxnFzb02H0bRq6QEvmuo_oR5cvyVlyXY5XRy7J-8P9W_nIqtfNU7muWMMtn5iQ2gSQBqyNXmAAdI4nHVXhY0ItDselktwmZYGDjFpar4HzYJB7EYxYkpu_3rjL9XbYj_1hrUaoZ-d6dq4Vil9EfEcU</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Echterhoff, Siegfried</creator><creator>Emerson, Heath</creator><creator>Kim, Hyun Jeong</creator><general>European Mathematical Society Publishing House</general><scope/></search><sort><creationdate>2010</creationdate><title>A Lefschetz fixed-point formula for certain orbifold C-algebras</title><author>Echterhoff, Siegfried ; Emerson, Heath ; Kim, Hyun Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-3478d048099eb31d01aa2f7e56bef17317145429f590204e749b7022d812b3d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Functional analysis</topic><topic>K$-theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echterhoff, Siegfried</creatorcontrib><creatorcontrib>Emerson, Heath</creatorcontrib><creatorcontrib>Kim, Hyun Jeong</creatorcontrib><jtitle>Journal of noncommutative geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echterhoff, Siegfried</au><au>Emerson, Heath</au><au>Kim, Hyun Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lefschetz fixed-point formula for certain orbifold C-algebras</atitle><jtitle>Journal of noncommutative geometry</jtitle><addtitle>J. Noncommut. Geom</addtitle><date>2010</date><risdate>2010</risdate><volume>4</volume><issue>1</issue><spage>125</spage><epage>155</epage><pages>125-155</pages><issn>1661-6952</issn><eissn>1661-6960</eissn><abstract>Using Poincaré duality in K-theory, we state and prove a Lefschetz fixed point formula for endomorphisms of crossed product C*-algebras C0(X) ⋊ G coming from covariant pairs. Here G is assumed countable, X a manifold, and X ⋊ G cocompact and proper. The formula in question describes the graded trace of the map induced by the automorphism on K-theory of C0(X) ⋊ G, i.e. the Lefschetz number, in terms of fixed orbits of the spatial map. Each fixed orbit contributes to the Lefschetz number by a formula involving twisted conjugacy classes of the corresponding isotropy group, and a secondary construction that associates, by way of index theory, a group character to any finite group action on a Euclidean space commuting with a given invertible matrix.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JNCG/51</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-6952
ispartof Journal of noncommutative geometry, 2010, Vol.4 (1), p.125-155
issn 1661-6952
1661-6960
language eng
recordid cdi_ems_journals_10_4171_JNCG_51
source European Mathematical Society Publishing House
subjects Functional analysis
K$-theory
title A Lefschetz fixed-point formula for certain orbifold C-algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lefschetz%20fixed-point%20formula%20for%20certain%20orbifold%20C-algebras&rft.jtitle=Journal%20of%20noncommutative%20geometry&rft.au=Echterhoff,%20Siegfried&rft.date=2010&rft.volume=4&rft.issue=1&rft.spage=125&rft.epage=155&rft.pages=125-155&rft.issn=1661-6952&rft.eissn=1661-6960&rft_id=info:doi/10.4171/JNCG/51&rft_dat=%3Cems%3E10_4171_JNCG_51%3C/ems%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true