A Lefschetz fixed-point formula for certain orbifold C-algebras
Using Poincaré duality in K-theory, we state and prove a Lefschetz fixed point formula for endomorphisms of crossed product C*-algebras C0(X) ⋊ G coming from covariant pairs. Here G is assumed countable, X a manifold, and X ⋊ G cocompact and proper. The formula in question describes the graded trace...
Gespeichert in:
Veröffentlicht in: | Journal of noncommutative geometry 2010, Vol.4 (1), p.125-155 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using Poincaré duality in K-theory, we state and prove a Lefschetz fixed point formula for endomorphisms of crossed product C*-algebras C0(X) ⋊ G coming from covariant pairs. Here G is assumed countable, X a manifold, and X ⋊ G cocompact and proper. The formula in question describes the graded trace of the map induced by the automorphism on K-theory of C0(X) ⋊ G, i.e. the Lefschetz number, in terms of fixed orbits of the spatial map. Each fixed orbit contributes to the Lefschetz number by a formula involving twisted conjugacy classes of the corresponding isotropy group, and a secondary construction that associates, by way of index theory, a group character to any finite group action on a Euclidean space commuting with a given invertible matrix. |
---|---|
ISSN: | 1661-6952 1661-6960 |
DOI: | 10.4171/JNCG/51 |