Factorizations and Hardy–Rellich-type inequalities

The principal aim of this note is to illustrate how factorizations of singular, even-order partial differential operators yield an elementary approach to classical inequalities of Hardy–Rellich-type. More precisely, introducing the two-parameter $n$-dimensional homogeneous scalar differential expres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gesztesy, Fritz, Littlejohn, Lance
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The principal aim of this note is to illustrate how factorizations of singular, even-order partial differential operators yield an elementary approach to classical inequalities of Hardy–Rellich-type. More precisely, introducing the two-parameter $n$-dimensional homogeneous scalar differential expressions $T_{\alpha,\beta} := - \Delta + \alpha |x|^{-2} x \cdot \nabla + \beta |x|^{-2}$, $\alpha, \beta \in \mathbb R$, $x \in \mathbb R^n \setminus \{0\}$, $n \in \mathbb N$, $n \geq 2$, and its formal adjoint, denoted by $T_{\alpha,\beta}^+$, we show that nonnegativity of $T_{\alpha,\beta}^+ T_{\alpha,\beta}$ on $C_0^{\infty}(\mathbb R^n \setminus \{0\})$ implies the fundamental inequality (*) \begin{equation}\tag{$*$}\label{0.1} \begin{aligned} \int_{\mathbb R^n} [(\Delta f)(x)]^2 \, d^n x & \geq [(n - 4) \alpha - 2 \beta] \int_{\mathbb R^n} |x|^{-2} |(\nabla f)(x)|^2 \, d^n x \\ & \quad - \alpha (\alpha - 4) \int_{\mathbb R^n} |x|^{-4} |x \cdot (\nabla f)(x)|^2 \, d^n x \\ & \quad + \beta [(n - 4) (\alpha - 2) - \beta] \int_{\mathbb R^n} |x|^{-4} |f(x)|^2 \, d^n x,\\ &&\llap {f \in C^{\infty}_0(\mathbb R^n \setminus \{0\}).} \end{aligned} \end{equation} A particular choice of values for $\alpha$ and $\beta$ in (*) yields known Hardy–Rellich-type inequalities, including the classical Rellich inequality and an inequality due to Schmincke. By locality, these inequalities extend to the situation where $\mathbb R^n$ is replaced by an arbitrary open set $\Omega \subseteq \mathbb R^n$ for functions $f \in C^{\infty}_0(\Omega \setminus \{0\})$. Perhaps more importantly, we will indicate that our method, in addition to being elementary, is quite flexible when it comes to a variety of generalized situations involving the inclusion of remainder terms and higher-order operators.