Rail vehicle axlebox roller bearing life and failure analysis based on the Hertz contact theory, finite element modeling, and field observations
Purpose Bearings are critical components used to support loads and facilitate motion for rotating and sliding parts of the machinery. Bearing malfunctions can cause catastrophic failures. Hence, failure analysis and endeavors to improve bearing performance are essential discussions for worldwide des...
Gespeichert in:
Veröffentlicht in: | World journal of engineering 2024-12, Vol.21 (6), p.1183-1192 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Bearings are critical components used to support loads and facilitate motion for rotating and sliding parts of the machinery. Bearing malfunctions can cause catastrophic failures. Hence, failure analysis and endeavors to improve bearing performance are essential discussions for worldwide designers, manufacturers and end users of vital machinery. This study aims to investigate a type of roller bearing from the railway industry with premature failures. The task arises because locomotives’ maintenance and service life quality are vital to railway operations while providing transportation services for the nation. To assist in maintaining the designated locomotives, the present study scrutinizes the causes of failure of heavy-duty roller bearings from locomotive bogie axleboxes.
Design/methodology/approach
It is intended to inspect this bearing service life and statistically scrutinize its design parameters to reveal the failures’ shortcomings and origins. The significant measures include examinations of their failures’ primary and vital factors by comparing them with a real-life service history of 16 roller bearings of the same type. The bearings come from the axleboxes of a locomotive bogie with an axle load of 20 tons. The bearing loads are estimated using the EN13104 standard document and confirmed by the finite element method using ABAQUS engineering software. To validate the finite element modeling results, the bearings’ stress analysis is performed using the Hertzian contact theory that demonstrated perfect conformity. The said methods are also used to search for the areas susceptible to failures in these bearings. With the inclusion and exploitation of the bearing maintenance conditions and the logbook recordings of the locomotives for the past seven years, the critical cause for this type of bearing’s failures is surveyed and discussed.
Findings
With the inclusion and exploitation of the bearing maintenance conditions and the logbook recordings of the locomotives for the past seven years, the critical cause for this type of bearing’s failures is surveyed and discussed. As a crucial result, it is found that deprived maintenance and inadequate lubrication are the root causes of the loss of the selected bearings.
Originality/value
For the designated locomotives, the origins of the heavy-duty roller bearing failures and its design shortcomings are revealed by examining and comparing them with a real-life service history of many of the same types of |
---|---|
ISSN: | 1708-5284 1708-5284 |
DOI: | 10.1108/WJE-01-2023-0010 |