Data-driven quality improvement approach to reducing waste in manufacturing
PurposeData-driven quality management systems, brought about by the implementation of digitisation and digital technologies, is an integral part of improving supply chain management performance. The purpose of this study is to determine a methodology to aid the implementation of digital technologies...
Gespeichert in:
Veröffentlicht in: | TQM journal 2023-01, Vol.35 (1), p.51-72 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PurposeData-driven quality management systems, brought about by the implementation of digitisation and digital technologies, is an integral part of improving supply chain management performance. The purpose of this study is to determine a methodology to aid the implementation of digital technologies and digitisation of the supply chain to enable data-driven quality management and the reduction of waste from manufacturing processes.Design/methodology/approachMethodologies from both the quality management and data science disciplines were implemented together to test their effectiveness in digitalising a manufacturing process to improve supply chain management performance. The hybrid digitisation approach to process improvement (HyDAPI) methodology was developed using findings from the industrial use case.FindingsUpon assessment of the existing methodologies, Six Sigma and CRISP-DM were found to be the most suitable process improvement and data mining methodologies, respectively. The case study revealed gaps in the implementation of both the Six Sigma and CRISP-DM methodologies in relation to digitisation of the manufacturing process.Practical implicationsValuable practical learnings borne out of the implementation of these methodologies were used to develop the HyDAPI methodology. This methodology offers a pragmatic step by step approach for industrial practitioners to digitally transform their traditional manufacturing processes to enable data-driven quality management and improved supply chain management performance.Originality/valueThis study proposes the HyDAPI methodology that utilises key elements of the Six Sigma DMAIC and the CRISP-DM methodologies along with additions proposed by the author, to aid with the digitisation of manufacturing processes leading to data-driven quality management of operations within the supply chain. |
---|---|
ISSN: | 1754-2731 1754-274X |
DOI: | 10.1108/TQM-02-2021-0061 |