Enhanced cooling rates in laser directed energy deposition with interlayer peening

Purpose This study aims to investigate the effect of mechanical peening on the cooling rate of a subsequently deposited layer in a hybrid additive manufacturing (AM) process. Design/methodology/approach In this experimental study, 20 layers of 316 L stainless steel are built via directed energy depo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid prototyping journal 2023-06, Vol.29 (6), p.1289-1298
Hauptverfasser: Mithal, Abeer, Maharjan, Niroj, Idapalapati, Sridhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This study aims to investigate the effect of mechanical peening on the cooling rate of a subsequently deposited layer in a hybrid additive manufacturing (AM) process. Design/methodology/approach In this experimental study, 20 layers of 316 L stainless steel are built via directed energy deposition, with the tenth layer being subject to various peening processes (shot peening, hammer peening and laser shock peening). The microstructure of the eleventh layer of all the samples is then characterized to estimate the cooling rate. Findings The measurements indicate that the application of interlayer peening causes a reduction in primary cellular arm spacing and an increase in micro segregation as compared to a sample prepared without interlayer peening. Both factors indicate an increase in the cooling rate brought about by the interlayer peening. Practical implications This work provides insight into process design for hybrid AM processes as cooling rates are known to influence mechanical properties in laser-based AM. Originality/value To the best of the authors’ knowledge, this work is the first of its kind to evaluate the effects of interlayer peening on a subsequently deposited layer in a hybrid AM process.
ISSN:1355-2546
1758-7670
1355-2546
DOI:10.1108/RPJ-11-2022-0395