Experimental and computational investigations of the potential improvement in helmet blast-protection through the use of a polyurea-based external coating
Purpose – The design of the Advanced Combat Helmet (ACH) currently in use was optimized by its designers in order to attain maximum protection against ballistic impacts (fragments, shrapnel, etc.) and hard-surface/head collisions. Since traumatic brain injury experienced by a significant fraction of...
Gespeichert in:
Veröffentlicht in: | Multidiscipline modeling in materials and structures 2016-06, Vol.12 (1), p.33-72 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
– The design of the Advanced Combat Helmet (ACH) currently in use was optimized by its designers in order to attain maximum protection against ballistic impacts (fragments, shrapnel, etc.) and hard-surface/head collisions. Since traumatic brain injury experienced by a significant fraction of the soldiers returning from the recent conflicts is associated with their exposure to blast, the ACH should be redesigned in order to provide the necessary level of protection against blast loads. The paper aims to discuss this issue.
Design/methodology/approach
– In the present work, an augmentation of the ACH for improved blast protection is considered. This augmentation includes the use of a polyurea (a nano-segregated elastomeric copolymer) based ACH external coating. To demonstrate the efficacy of this approach, blast experiments are carried out on instrumented head-mannequins (without protection, protected using a standard ACH, and protected using an ACH augmented by a polyurea explosive-resistant coating (ERC)). These experimental efforts are complemented with the appropriate combined Eulerian/Lagrangian transient non-linear dynamics computational fluid/solid interaction finite-element analysis.
Findings
– The results obtained clearly demonstrated that the use of an ERC on an ACH affects (generally in a beneficial way) head-mannequin dynamic loading and kinematic response as quantified by the intracranial pressure, impulse, acceleration and jolt.
Originality/value
– To the authors’ knowledge, the present work is the first reported combined experimental/computational study of the blast-protection efficacy and the mild traumatic brain-injury mitigation potential of polyurea when used as an external coating on a helmet. |
---|---|
ISSN: | 1573-6105 1573-6113 |
DOI: | 10.1108/MMMS-02-2015-0009 |