Characterization of embedded membrane in corrugated silicon microphones for high-frequency resonance applications

Purpose The purpose of this paper is to propose an alternative approach to improve the performance of microelectromechanical systems (MEMSs) silicon (Si) condenser microphones in terms of operating frequency and sensitivity through the introduction of a secondary material with a contrast of mechanic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics international 2019-10, Vol.36 (4), p.137-142
Hauptverfasser: Auliya, Rahmat Zaki, Buyong, Muhamad Ramdzan, Yeop Majlis, Burhanuddin, Mohd. Razip Wee, Mohd. Farhanulhakim, Ooi, Poh Choon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The purpose of this paper is to propose an alternative approach to improve the performance of microelectromechanical systems (MEMSs) silicon (Si) condenser microphones in terms of operating frequency and sensitivity through the introduction of a secondary material with a contrast of mechanical properties in the corrugated membrane. Design/methodology/approach Finite element method from COMSOL is used to analyze the MEMS microphones performance consisting of solid mechanic, electrostatic and thermoviscous acoustic interfaces. Hence, the simulated results could described the physical mechanism of the MEMS microphones, especially in the case of microphones with complex geometry. A 2-D model was used to simplify computation by applying axis symmetry condition. Findings The simulation results have suggested that the operating frequency range of the microphone could be extended to be operated beyond 20 kHz in the audible frequency range. The data showed that the frequency resonance of the microphone using a corrugated Si membrane with SiC as the embedded membrane is increased up to 70 kHz compared with 63 kHz for the plane Si membrane, whereas the microphone’s sensitivity is slightly decreased to −79 from −76 dB. Furthermore, the frequency resonance of a corrugated membrane microphone could be improved from 26 to 70 kHz by embedding the SiC material. Last, the sensitivity and frequency resonance value of the microphones could be modified by adjusting the height of the embedded material. Originality/value Based on these theoretical results, the proposed modification highlighted the advantages of simultaneous modifications of frequency and sensitivity that could extend the applications of sound and acoustic detections in the ultrasonic spectrum with an acceptable performance compared with the typical state-of-the-art Si condenser microphones.
ISSN:1356-5362
1758-812X
DOI:10.1108/MI-02-2019-0010