A longevity basis risk analysis in a joint FDM framework
Purpose The improvements of longevity are intensifying the need for capital markets to be used to manage and transfer the risk through longevity-linked securities. Nevertheless, the difference between the reference population of the hedging instrument and the population of members of a pension plan,...
Gespeichert in:
Veröffentlicht in: | The journal of risk finance 2017-01, Vol.18 (1), p.55-75 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The improvements of longevity are intensifying the need for capital markets to be used to manage and transfer the risk through longevity-linked securities. Nevertheless, the difference between the reference population of the hedging instrument and the population of members of a pension plan, or the beneficiaries of an annuity portfolio, determines a significant heterogeneity causing the so-called basis risk. In particular, it is shown that if insurers use financial instruments based on national indices to hedge longevity risk, this hedge can become imperfect. For this reason, it is fundamental to arrange a model allowing to quantify the basis risk for minimising it through a correct calibration of the hedging instrument.
Design/methodology/approach
The paper provides a framework for measuring the basis risk impact on the. To this aim, we propose a model that measures the population basis risk involved in a longevity hedge, in the functional data model setting. hedging strategies.
Findings
The innovative contribution of the paper occurs in two key points: the modelling of mortality and the hedging strategy. Regarding the first point, the paper proposes a functional demographic model framework (FDMF) for capturing the basis risk. The FDMF model generally designed for single population combines functional data analysis, nonparametric smoothing and robust statistics. It allows to capture the variability of the mortality trend, by separating out the effects of several orthogonal components. The novelty is to set the FDMF for modelling the mortality of the two populations, the hedging and the exposed one. Regarding the second point, the basic idea is to calibrate the hedging strategy determining a suitable mixture of q-forwards linked to mortality rates to maximise the degree of longevity risk reduction. This calibration is based on the key q-duration intended as a measure allowing to estimate the price sensitivity of the annuity portfolio to the changes in the underlying mortality curve.
Originality/value
The novelty lies in linking the shift in the mortality curve to the standard deviation of the historical mortality rates of the exposed population. This choice has been determined by the observation that the shock in a mortality rate is age dependent. The main advantage of the presented framework is its strong versatility, being the functional demographic setting a generalisation of the Lee-Carter model commonly used in mortality forecasting, it allows |
---|---|
ISSN: | 1526-5943 2331-2947 |
DOI: | 10.1108/JRF-03-2016-0030 |