The evaluation of the Australian office market forecast accuracy
Purpose Property market models have the overriding aim of predicting reasonable estimates of key dependent variables (demand, supply, rent, yield, vacancy and net absorption rate). These can be based on independent drivers of core property and economic activities. Accurate predictions can only be co...
Gespeichert in:
Veröffentlicht in: | Journal of property investment & finance 2018-04, Vol.36 (3), p.259-272 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Property market models have the overriding aim of predicting reasonable estimates of key dependent variables (demand, supply, rent, yield, vacancy and net absorption rate). These can be based on independent drivers of core property and economic activities. Accurate predictions can only be conducted when ample quantitative data are available with fewer uncertainties. However, a broad-fronted social, technical and ecological evolution can throw up sudden, unexpected shocks that result in the econometric outputs sceptical to unknown risk factors. Therefore, the purpose of this paper is to evaluate Australian office market forecast accuracy and to determine whether the forecasts capture extreme downside risk events.
Design/methodology/approach
This study follows a quantitative research approach, using secondary data analysis to test the accuracy of economists’ forecasts. The forecast accuracy evaluation encompasses the measurement of economic and property forecasts under the following phases: testing for the forecast accuracy; analysing outliers of forecast errors; and testing of causal relationships. Forecast accuracy measurement incorporates scale independent metrics that include Theil’s U values (U1 and U2) and mean absolute scaled error. Inter-quartile range rule is used for the outlier analysis. To find the causal relationships among variables, the time series regression methodology is utilised, including multiple regression analysis and Granger causality developed under the vector auto regression (VAR).
Findings
The credibility of economic and property forecasts was questionable around the period of the Global Financial Crisis (GFC); a significant man-made Black Swan event. The forecast accuracy measurement highlighted rental movement and net absorption forecast errors as the critical inaccurate predictions. These key property variables are explained by historic information and independent economic variables. However, these do not explain the changes when error time series of the variables were concerned. According to VAR estimates, all property variables have a significant causality derived from the lagged values of Australian S&P/ASX 200 (ASX) forecast errors. Therefore, lagged ASX forecast errors could be used as a warning signal to adjust property forecasts.
Research limitations/implications
Secondary data were obtained from the premier Australian property markets: Canberra, Sydney, Brisbane, Adelaide, Melbourne and Perth. A limited ten-year |
---|---|
ISSN: | 1463-578X 1470-2002 |
DOI: | 10.1108/JPIF-04-2017-0029 |