Automating tourism online reviews: a neural network based aspect-oriented sentiment classification
Purpose This paper aims to classify the sentiment of online tourism-hospitality reviews at an aspect level. A new aspect-oriented sentiment classification method is proposed based on a neural network model. Design/methodology/approach This study constructs an aspect-oriented sentiment classification...
Gespeichert in:
Veröffentlicht in: | Journal of hospitality and tourism technology 2023-01, Vol.14 (1), p.1-20 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
This paper aims to classify the sentiment of online tourism-hospitality reviews at an aspect level. A new aspect-oriented sentiment classification method is proposed based on a neural network model.
Design/methodology/approach
This study constructs an aspect-oriented sentiment classification model using an integrated four-layer neural network: the bidirectional encoder representation from transformers (BERT) word vector model, long short-term memory, interactive attention-over-attention (IAOA) mechanism and a linear output layer. The model was trained, tested and validated on an open training data set and 92,905 reviews extrapolated from restaurants in Tokyo.
Findings
The model achieves significantly better performance compared with other neural networks. The findings provide empirical evidence to validate the suitability of this new approach in the tourism-hospitality domain.
Research limitations/implications
More sentiments should be identified to measure more fine-grained tourism-hospitality experience, and new aspects are recommended that can be automatically added into the aspect set to provide dynamic support for new dining experiences.
Originality/value
This study provides an update to the literature with respect to how a neural network could improve the performance of aspect-oriented sentiment classification for tourism-hospitality online reviews.
自动化旅游在线评论:基于神经网络的面向方面的情感分类
研究目的
本文旨在从方面级对在线旅游-酒店评论的情感进行分类。提出了一种基于神经网络模型的面向方面的情感分类新方法。
研究设计/方法/途径
本研究使用集成的四层神经网络构建面向方面的情感分类模型:BERT 词向量模型、LSTM、IAOA 机制和线性输出层。该模型在一个开放的训练数据集和从东京餐厅推断的 92,905 条评论上进行了训练、测试和验证。
研究发现
与其他神经网络相比, 该模型实现了显着更好的性能。研究结果提供了经验证据, 以验证这种新方法在旅游酒店领域的适用性。
研究原创性
该研究提供了有关神经网络如何提高旅游酒店在线评论的面向方面的情感分类性能的新文献。
研究研究局限
应该识别更多的情感从而来更加细化衡量旅游酒店体验, 并推荐新的方面/维度可以被自动添加到方面集中, 为新的用餐体验提供动态支持。 |
---|---|
ISSN: | 1757-9880 1757-9880 1757-9899 |
DOI: | 10.1108/JHTT-03-2021-0099 |