Modelling near-real-time order arrival demand in e-commerce context: a machine learning predictive methodology
PurposeAccurate prediction of order demand across omni-channel supply chains improves the management's decision-making ability at strategic, tactical and operational levels. The paper aims to develop a predictive methodology for forecasting near-real-time e-commerce order arrivals in distributi...
Gespeichert in:
Veröffentlicht in: | Industrial management + data systems 2020-06, Vol.120 (6), p.1149-1174 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PurposeAccurate prediction of order demand across omni-channel supply chains improves the management's decision-making ability at strategic, tactical and operational levels. The paper aims to develop a predictive methodology for forecasting near-real-time e-commerce order arrivals in distribution centres, allowing third-party logistics service providers to manage the hour-to-hour fast-changing arrival rates of e-commerce orders better.Design/methodology/approachThe paper proposes a novel machine learning predictive methodology through the integration of the time series data characteristics into the development of an adaptive neuro-fuzzy inference system. A four-stage implementation framework is developed for enabling practitioners to apply the proposed model.FindingsA structured model evaluation framework is constructed for cross-validation of model performance. With the aid of an illustrative case study, forecasting evaluation reveals a high level of accuracy of the proposed machine learning approach in forecasting the arrivals of real e-commerce orders in three different retailers at three-hour intervals.Research limitations/implicationsResults from the case study suggest that real-time prediction of individual retailer's e-order arrival is crucial in order to maximize the value of e-order arrival prediction for daily operational decision-making.Originality/valueEarlier researchers examined supply chain demand, forecasting problem in a broader scope, particularly in dealing with the bullwhip effect. Prediction of real-time, hourly based order arrivals has been lacking. The paper fills this research gap by presenting a novel data-driven predictive methodology. |
---|---|
ISSN: | 0263-5577 1758-5783 |
DOI: | 10.1108/IMDS-12-2019-0646 |