Modelling near-real-time order arrival demand in e-commerce context: a machine learning predictive methodology

PurposeAccurate prediction of order demand across omni-channel supply chains improves the management's decision-making ability at strategic, tactical and operational levels. The paper aims to develop a predictive methodology for forecasting near-real-time e-commerce order arrivals in distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial management + data systems 2020-06, Vol.120 (6), p.1149-1174
Hauptverfasser: Leung, K.H, Mo, Daniel Y, Ho, G.T.S, Wu, C.H, Huang, G.Q
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PurposeAccurate prediction of order demand across omni-channel supply chains improves the management's decision-making ability at strategic, tactical and operational levels. The paper aims to develop a predictive methodology for forecasting near-real-time e-commerce order arrivals in distribution centres, allowing third-party logistics service providers to manage the hour-to-hour fast-changing arrival rates of e-commerce orders better.Design/methodology/approachThe paper proposes a novel machine learning predictive methodology through the integration of the time series data characteristics into the development of an adaptive neuro-fuzzy inference system. A four-stage implementation framework is developed for enabling practitioners to apply the proposed model.FindingsA structured model evaluation framework is constructed for cross-validation of model performance. With the aid of an illustrative case study, forecasting evaluation reveals a high level of accuracy of the proposed machine learning approach in forecasting the arrivals of real e-commerce orders in three different retailers at three-hour intervals.Research limitations/implicationsResults from the case study suggest that real-time prediction of individual retailer's e-order arrival is crucial in order to maximize the value of e-order arrival prediction for daily operational decision-making.Originality/valueEarlier researchers examined supply chain demand, forecasting problem in a broader scope, particularly in dealing with the bullwhip effect. Prediction of real-time, hourly based order arrivals has been lacking. The paper fills this research gap by presenting a novel data-driven predictive methodology.
ISSN:0263-5577
1758-5783
DOI:10.1108/IMDS-12-2019-0646