Three-dimensional CFD simulation and experimental validation of particle segregation in CFB riser
Purpose The purpose of this paper is to perform the computational fluid dynamics (CFD) simulation with experimental validation to investigate the particle segregation effect in abrupt and smooth shapes circulating fluidized bed (CFB) risers. Design/methodology/approach The experimental investigation...
Gespeichert in:
Veröffentlicht in: | International journal of numerical methods for heat & fluid flow 2021-03, Vol.31 (4), p.1144-1171 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The purpose of this paper is to perform the computational fluid dynamics (CFD) simulation with experimental validation to investigate the particle segregation effect in abrupt and smooth shapes circulating fluidized bed (CFB) risers.
Design/methodology/approach
The experimental investigations were carried out in lab-scale CFB systems and the CFD simulations were performed by using commercial software BARRACUDA. Special attention was paid to investigate the gas-particle flow behavior at the top of the riser with three different superficial velocities, namely, 4, 6 and 7.7 m/s. Here, a CFD-based noble simulation approach called multi-phase particle in cell (MP-PIC) was used to investigate the effect of traditional drag models (Wen-Yu, Ergun, Wen-Yu-Ergun and Richardson-Davidson-Harrison) on particle flow characteristics in CFB riser.
Findings
Findings from the experimentations revealed that the increase in gas velocity leads to decrease the mixing index inside the riser. Moreover, the solid holdup found more in abrupt riser than smooth riser at the constant gas velocity. Despite the more experimental investigations, the findings with CFD simulations revealed that the MP-PIC approach, which was combined with different drag models could be more effective for the practical (industrial) design of CFB riser. Well agreement was found between the simulation and experimental outputs. The simulation work was compared with experimental data, which shows the good agreement ( |
---|---|
ISSN: | 0961-5539 1758-6585 |
DOI: | 10.1108/HFF-04-2020-0197 |