A new spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations via Chebyshev polynomials

Purpose The purpose of this paper is to develop an efficient and reliable spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations. Design/methodology/approach In this study, the considered two-dimensional unsteady advection-diffusion equations are transfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering computations 2019-09, Vol.36 (7), p.2327-2368
Hauptverfasser: Hadadian Nejad Yousefi, Mohsen, Ghoreishi Najafabadi, Seyed Hossein, Tohidi, Emran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The purpose of this paper is to develop an efficient and reliable spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations. Design/methodology/approach In this study, the considered two-dimensional unsteady advection-diffusion equations are transformed into the equivalent partial integro-differential equations via integrating from the considered unsteady advection-diffusion equation. After this stage, by using Chebyshev polynomials of the first kind and the operational matrix of integration, the integral equation would be transformed into the system of linear algebraic equations. Robustness and efficiency of the proposed method were illustrated by six numerical simulations experimentally. The numerical results confirm that the method is efficient, highly accurate, fast and stable for solving two-dimensional unsteady advection-diffusion equations. Findings The proposed method can solve the equations with discontinuity near the boundaries, the advection-dominated equations and the equations in irregular domains. One of the numerical test problems designed specially to evaluate the performance of the proposed method for discontinuity near boundaries. Originality/value This study extends the intention of one dimensional Chebyshev approximate approaches (Yuksel and Sezer, 2013; Yuksel et al., 2015) for two-dimensional unsteady advection-diffusion problems and the basic intention of our suggested method is quite different from the approaches for hyperbolic problems (Bulbul and Sezer, 2011).
ISSN:0264-4401
1758-7077
DOI:10.1108/EC-02-2018-0063