Grey wolf optimization based parameter selection for support vector machines

Purpose The purpose of this paper is to tune support vector machine (SVM) classifier using grey wolf optimizer (GWO). Design/methodology/approach The schema of the work aims at extracting the features from the collected data followed by a SVM classifier and metaheuristic optimization to tune the cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compel 2016-09, Vol.35 (5), p.1513-1523
Hauptverfasser: Eswaramoorthy, Sathish, Sivakumaran, N, Sekaran, Sankaranarayanan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The purpose of this paper is to tune support vector machine (SVM) classifier using grey wolf optimizer (GWO). Design/methodology/approach The schema of the work aims at extracting the features from the collected data followed by a SVM classifier and metaheuristic optimization to tune the classifier parameters. Findings The optimal tuning of classifier parameters lowers errors due to manual elucidation and decreases the risk in human perceptions and repeated visual dignosis. Originality/value A novel, GWO based tuning algorithm is used for SVM classifier, which is implemented in classifying the complex and nonlinear biomedical signals like intracranial electroencephalogram.
ISSN:0332-1649
2054-5606
DOI:10.1108/COMPEL-09-2015-0337