Switched-flux machines with hybrid NdFeB and ferrite magnets
Purpose – The purpose of this paper is to comparatively study the conventional, i.e. single magnet, and novel hybrid-magnet switched-flux permanent-magnet (HMSFPM) machines. Design/methodology/approach – The HMSFPM machines utilize two magnet types, i.e. low-cost ferrites and NdFeB. Thus, a set of m...
Gespeichert in:
Veröffentlicht in: | Compel 2016-03, Vol.35 (2), p.456-472 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
– The purpose of this paper is to comparatively study the conventional, i.e. single magnet, and novel hybrid-magnet switched-flux permanent-magnet (HMSFPM) machines.
Design/methodology/approach
– The HMSFPM machines utilize two magnet types, i.e. low-cost ferrites and NdFeB. Thus, a set of magnet ratios (?), defined as the quotient of the NdFeB volume to the total PM volume, is introduced. This allows any desired performance and cost trade-off to be designed. Series- and parallel-excited magnet configurations are investigated using 2-dimensional finite element analysis.
Findings
– The torque of the HMSFPM machines is lower than the NdFeB SFPM machine but the flux-weakening performance is improved for similar machine efficiency. If the machine dimensions are unconstrained, the HMSFPM machines can have the same torque for reduced material costs and a moderate increase in machine dimensions. Ferrite SFPM machines have the lowest cost for the same torque but a significant increase in machine dimensions is required. Finally, the series-excited HMSFPM machine is the preferred over the parallel-excited HMSFPM machine because it has superior demagnetization withstand capability.
Research limitations/implications
– Mechanical and winding eddy current losses are not considered in the efficiency map calculations.
Originality/value
– The NdFeB SFPM, ferrite SFPM, series-excited HMSFPM, and the parallel-excited HMSFPM machines are compared for their electromagnetic performance, flux-weakening, PM demagnetization, efficiency, and material costs. |
---|---|
ISSN: | 0332-1649 2054-5606 |
DOI: | 10.1108/COMPEL-03-2015-0112 |