Effects of temperature and Ti addition on high-temperature oxidation behaviors of Co-Al-W based superalloys

Purpose Due to the special service environment of superalloys, this paper aims to obtain effects of temperature and Ti addition on high temperature oxidation behavior of Co-Al-W-B alloys. Design/methodology/approach Isothermal oxidation experiment of Co-Al-W-based alloys were carried out at 800°C, 9...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anti-corrosion methods and materials 2020-09, Vol.67 (5), p.445-451
Hauptverfasser: Ma, Chunmei, Yang, Songting, Zhang, Yuheng, Wang, Kaikun, Fu, Huadong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Due to the special service environment of superalloys, this paper aims to obtain effects of temperature and Ti addition on high temperature oxidation behavior of Co-Al-W-B alloys. Design/methodology/approach Isothermal oxidation experiment of Co-Al-W-based alloys were carried out at 800°C, 900°C and 1000°C for different times (3, 5, 10, 20, 50 and 100 h) referring to the method of HB5258-2000. Oxidation weight gain curves and oxidation products were detected. Findings The results showed that the average oxidation rates of Co-Al-W-B alloy at 800 °C and 900 °C were 0.489 g·m−2·h−1 and 0.888 g·m−2·h−1, respectively, which belonged to an antioxidant grade. However, the average oxidation rate at 1000 °C was 2.068 g m−2·h−1, belonging to the secondary oxidation resistance class. In the alloy with Ti addition, dense Ti oxides film were formed at the early oxidation stage and then gradually diffused later, which can increase the oxidation resistance of the alloys to some extent. By analyzing the oxidation products of Co-Al-W-B alloy, it was found that a dense Al2O3 layer could be formed when the alloy was oxidized at 800°C. The continuous Al2O3 layer would prevent the oxygen from further spreading and make the alloy into the stable oxidation stage. However, only a non-dense Al2O3 layer were observed with 900°C oxidation. Originality/value It can provide references for the composition design, preparation process optimization and protective coating selection of the γ′ phase strengthened cobalt-base superalloys.
ISSN:0003-5599
1758-4221
DOI:10.1108/ACMM-04-2020-2298