A dynamic adaptive system for economic design of multiple control charts

Much research has recently been conducted into the use of models for the economic design of multiple control charts (EDCC). Control chart models generally assume that most process variables are constant and only a limited number of the major variables are varied to reach a local optimum. In the econ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrated manufacturing systems 2000-07, Vol.11 (4), p.277-285
Hauptverfasser: Tsai, Chen-Fang, Bowerman, Chris, Tait, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Much research has recently been conducted into the use of models for the economic design of multiple control charts (EDCC). Control chart models generally assume that most process variables are constant and only a limited number of the major variables are varied to reach a local optimum. In the economic design of multiple control charts (EDMCC), multiple control charts are used to analyse many manufacturing process variables simultaneously, in order to produce an optimal design for process control. However, the large number of variables often makes it difficult to solve this optimisation problem manually. This research explores the proposition that EDMCC can be optimised by using a novel genetic algorithm which dynamically adjusts the genetic algorithm's (GA) operator and parameter settings during operation to ensure optimum effectiveness. This method involves refining the chromosome structure and using orthogonal arrays with fuzzy reasoning to reduce the search space.
ISSN:0957-6061
DOI:10.1108/09576060010326401