Differentiability Properties of the Pre-Image Pressure
We study the differentiability properties of the pre-image pressure. For a TDS (X,T) with finite topological pre-image entropy, we prove the pre-image pressure function Ppre(T,•) is Gateaux differentiable at f∈C(X,R) if and only if Ppre(T,•) has a unique tangent functional at f. Also, we obtain some...
Gespeichert in:
Veröffentlicht in: | Discrete dynamics in nature and society 2012, Vol.2012 (2012), p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the differentiability properties of the pre-image pressure. For a TDS (X,T) with finite topological pre-image entropy, we prove the pre-image pressure function Ppre(T,•) is Gateaux differentiable at f∈C(X,R) if and only if Ppre(T,•) has a unique tangent functional at f. Also, we obtain some equivalent conditions for Ppre(T,•) to be Fréchet differentiable at f. |
---|---|
ISSN: | 1026-0226 1607-887X |