Differentiability Properties of the Pre-Image Pressure

We study the differentiability properties of the pre-image pressure. For a TDS (X,T) with finite topological pre-image entropy, we prove the pre-image pressure function Ppre(T,•) is Gateaux differentiable at f∈C(X,R) if and only if Ppre(T,•) has a unique tangent functional at f. Also, we obtain some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete dynamics in nature and society 2012, Vol.2012 (2012), p.1-14
Hauptverfasser: Yan, Kesong, Zeng, Fanping, Zhang, Gengrong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the differentiability properties of the pre-image pressure. For a TDS (X,T) with finite topological pre-image entropy, we prove the pre-image pressure function Ppre(T,•) is Gateaux differentiable at f∈C(X,R) if and only if Ppre(T,•) has a unique tangent functional at f. Also, we obtain some equivalent conditions for Ppre(T,•) to be Fréchet differentiable at f.
ISSN:1026-0226
1607-887X