Removal of permethrin pesticide from waterby chitosan-zinc oxide nanoparticles composite as an adsorbent
Synthesis of chitosan–ZnO nanoparticles (CS–ZnONPs) composite beads was performed by a polymer-based method. The resulting bionanocomposite was characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) spectroscopy and infrared spectroscopy (FT-IR). Adsorption applications...
Gespeichert in:
Veröffentlicht in: | Journal of Saudi Chemical Society 2014, Vol.18 (4), p.348-355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synthesis of chitosan–ZnO nanoparticles (CS–ZnONPs) composite beads was performed by a polymer-based method. The resulting bionanocomposite was characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) spectroscopy and infrared spectroscopy (FT-IR). Adsorption applications for removal of pesticide pollutants were conducted. The optimum conditions, including adsorbent dose, agitating time, initial concentration of pesticide and pH on the adsorption of pesticide by chitosan loaded with zinc oxide nanoparticles beads were investigated. Results showed that 0.5 g of the bionanocomposite, in room temperature and pH 7, could remove 99 % of the pesticide from permethrin solution (25 ml, 0.1 mg L-1), using UV spectrophotometer at 272 nm. Then, the application of the adsorbent for pesticide removal was studied in the on-line column. The column was regenerated with NaOH solution (0.1 M) completely, and then reused for adsorption application. The CS–ZnONPs composite beads appear to be the new promising material in water treatment application with 56 % regeneration after 3 cycles. |
---|---|
ISSN: | 1319-6103 |