Priority based transmission rate control with neural network controller in WMSNs
Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from...
Gespeichert in:
Veröffentlicht in: | Journal of Engineering 2014, Vol.20 (4), p.66-81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | ara ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To address this challenge, This paper proposes the Neural Control Exponential Weight of Priority Based Rate Control (NEWPBRC) algorithm for adjusting the node transmission rate and facilitate the problem of congestion occur in WMSNs. The proposed algorithm combines Neural Network Controller (NC) with the Exponential Weight of Priority Based Rate Control (EWPBRC) algorithms. The NC controller can calculate the appropriate weight parameter λ in the Exponential Weight (EW) algorithm for estimating the output transmission rate of the sink node, and then ,on the basis of the priority of each child node , an appropriate transmission rate is assigned . The proposed algorithm can support four different traffic classes namely, Real Time traffic class (RT class); High priority, Non Real-Time traffic class (NRT1 class); Medium priority, Non Real-Time traffic class (NRT2 class); and Low priority, Non Real-Time traffic class (NRT3 class). Simulation result shows that the proposed algorithm can effectively reduce congestion and enhance the transmission rate. Furthermore, the proposed algorithm can enhance Quality of Service (QoS) by achieve better throughput, and reduced the transmission delay and loss probability.
شبكات الاستشعار اللاسلكية ذات الوسائط المتعددة هي شبكات مترابطة لاسلكيا بمجموعة من عقد الاستشعار المزودة بأجهزة الوسائط المتعددة، مثل الكاميرات و الميكروفونات. و بالتالي فإن هذه الشبكات لديها القدرة على نقل البيانات و الوسائط المتعددة، مثل الفيديو و الصوت، الصور الثابتة، و البيانات العددية من البيئة. معظم تطبيقات شبكات الاستشعار اللاسلكية ذات الوسائط المتعددة تتطلب إيصال المعلومات الوسائط المتعددة مع مستوى معين من جودة الخدمة. هذه هي مهمة صعبة لأن تطبيقات الوسائط المتعددة عادة ما تنتج كميات ضخمة من البيانات التي تتطلب معدلات |
---|---|
ISSN: | 1726-4073 2520-3339 |