Cloud task scheduling based on ant colony optimization

Cloud computing is the development of distributed computing, parallel computing and grid computing, or defined as the commercial implementation of these computer science concepts. One of the fundamental issues in this environment is related to task scheduling. Cloud task scheduling is an NP-hard opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International arab journal of information technology 2015, Vol.12 (2)
Hauptverfasser: al-Sisi, Ashraf, Arabi, Kishk, Turki, Fawzi, Tawfiq, Midhat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud computing is the development of distributed computing, parallel computing and grid computing, or defined as the commercial implementation of these computer science concepts. One of the fundamental issues in this environment is related to task scheduling. Cloud task scheduling is an NP-hard optimization problem, and many meta-heuristic algorithms have been proposed to solve it. A good task scheduler should adapt its scheduling strategy to the changing environment and the types of tasks. In this paper a cloud task scheduling policy based on ant colony optimization algorithm compared with different scheduling algorithms FCFS and round-robin, has been presented. The main goal of these algorithms is minimizing the makespan of a given tasks set. Ant colony optimization is random optimization search approach that will be used for allocating the incoming jobs to the virtual machines. Algorithms have been simulated using Cloudsim toolkit package. Experimental results showed that cloud task scheduling based on ant colony optimization outperformed FCFS and roundrobin algorithms.
ISSN:1683-3198
1683-3198