One stone two birds: electrochemical and colorimetric dual-mode biosensor based on copper peroxide/covalent organic framework nanocomposite for ultrasensentive norovirus detection
Norovirus (NoV) is regarded as one of the most common causes of foodborne diarrhea in the world. It is urgent to identify the pathogenic microorganism of the diarrhea in short time. In this work, we developed an electrochemical and colorimetric dual-mode detection for NoV based on the excellent dual...
Gespeichert in:
Veröffentlicht in: | Food Science and Human Wellness 2024-03, Vol.13 (2), p.920-931 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Norovirus (NoV) is regarded as one of the most common causes of foodborne diarrhea in the world. It is urgent to identify the pathogenic microorganism of the diarrhea in short time. In this work, we developed an electrochemical and colorimetric dual-mode detection for NoV based on the excellent dual catalytic properties of copper peroxide/COF-NH2 nanocomposite (CuO2@COF-NH2). For the colorimetric detection, NoV can be directly detected by the naked eye based on CuO2@COF-NH2 as a laccase-like nonazyme using “peptide-NoV-antibody” recognition mode. The colorimetric assay displayed a wide and quality linear detection range from 1 copy/mL to 5000 copies/mL of NoV with a low limit of detection (LOD) of 0.125 copy/mL. For the electrochemical detection of NoV, CuO2@COF-NH2 showed an oxidation peak of copper ion from Cu+ to Cu2+ using “peptide-NoV-antibody” recognition mode. The electrochemical assay showed a linear detection range was 15000 copies/mL with a LOD of 0.152 copy/mL. It’s worthy to note that this assay does not need other electrical signal molecule, which provide the stable and sensitive electrochemial detection for NoV. The electrochemical and colorimetric dual-mode detection was used to detect NoV in foods and faceal samples, which has the potential for improving food safety and diagnosing of NoV-infected diarrhea.
[Display omitted]
•An electrochemical and colorimetric dual-mode assay for norovirus detection was developed.•The assay was constructed based on copper peroxide/covalent organic framework nanocomposite.•The assay showed ultrasensitivity, ideal repeatability, and desirable stability.•The assay was successfully used to detect norovirus in real sample. |
---|---|
ISSN: | 2213-4530 2097-0765 2213-4530 |
DOI: | 10.26599/FSHW.2022.9250079 |