Improving Methodology for High-Resolution Reconstruction of Sea-Level Rise and Neotectonics by Paleoecological Analysis and AMS14C Dating of Basal Peats
Sea-level research in several submerging coastal regions has traditionally been based on14C dating of basal peats that overlie a compaction-free substratum and can be related to paleo-(ground)water levels. Provided that an unequivocal relationship between (ground)water level and sea level can be ass...
Gespeichert in:
Veröffentlicht in: | Quaternary research 1998-01, Vol.49 (1), p.72-85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sea-level research in several submerging coastal regions has traditionally been based on14C dating of basal peats that overlie a compaction-free substratum and can be related to paleo-(ground)water levels. Provided that an unequivocal relationship between (ground)water level and sea level can be assumed, this approach contains two sources of uncertainty: (1) the paleoenvironmental interpretation of samples is usually based on inherently inaccurate macroscopic descriptions in the field, and (2)14C ages of bulk peat samples may be erroneous as a result of contamination. Due to the uncertainties in both the altitude and the age—the two crucial sources of evidence necessary to arrive at accurate sea-level curves—sea-level index points are therefore represented by considerable, but typically not quantified, error boxes. Accelerator mass spectrometry (AMS) opens new perspectives for this type of sea-level research, as illustrated by a paleoecological and AMS14C study of basal peats from a small study area in the Rhine–Meuse Delta (The Netherlands), where previous (conventional) work revealed highly problematic results. A detailed macrofossil analysis has two purposes: (1) an inferred paleoecological succession indicates a relatively accurate level of paludification of the site, and hence rise of the (ground)water level; (2) suitable macrofossils from that specific level are then selected for AMS14C dating. In spite of very small sample sizes, our results are consistent and indicate that this approach can constitute a step forward in high-resolution reconstruction of sea-level rise. The new results further enable a revision of Holocene (ground)water gradient lines for the Rhine–Meuse Delta. A knickpoint in these gradient lines can be related to the effect of faulting. This approach therefore also has considerable potential to unravel and quantify neotectonic activity in submerging coastal settings. |
---|---|
ISSN: | 0033-5894 1096-0287 |
DOI: | 10.1006/qres.1997.1938 |