On Capitulation of S-Ideals in Zp-Extensions

Let k be a finite extension of Q and p a prime number. Let K be a Zp-extension of k and S the set of all prime ideals in k which are ramified in K. We denote by A′∞ the p-Sylow subgroup of the S-divisor class group of K. We give a criterion for A′∞=0 which can be applied for general Zp-extensions. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 2001-01, Vol.86 (1), p.163-174
1. Verfasser: Sumida, Hiroki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be a finite extension of Q and p a prime number. Let K be a Zp-extension of k and S the set of all prime ideals in k which are ramified in K. We denote by A′∞ the p-Sylow subgroup of the S-divisor class group of K. We give a criterion for A′∞=0 which can be applied for general Zp-extensions. Further, we especially investigate the criterion for a totally real number field k in which p splits completely.
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.2000.2561