On Capitulation of S-Ideals in Zp-Extensions
Let k be a finite extension of Q and p a prime number. Let K be a Zp-extension of k and S the set of all prime ideals in k which are ramified in K. We denote by A′∞ the p-Sylow subgroup of the S-divisor class group of K. We give a criterion for A′∞=0 which can be applied for general Zp-extensions. F...
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2001-01, Vol.86 (1), p.163-174 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let k be a finite extension of Q and p a prime number. Let K be a Zp-extension of k and S the set of all prime ideals in k which are ramified in K. We denote by A′∞ the p-Sylow subgroup of the S-divisor class group of K. We give a criterion for A′∞=0 which can be applied for general Zp-extensions. Further, we especially investigate the criterion for a totally real number field k in which p splits completely. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1006/jnth.2000.2561 |