Fonctions [formula omitted]( G/ H)-Finies sur un Espace Symétrique Réductif

It is well known that, on R n , every smooth function annihilated by a finite codimensional ideal in the algebra of constant coefficient differential operators, is a linear combination of polynomial exponential functions, P( x) e λ( x) , λ ∈ Hom( R n , C ). Furthermore, the polynomial functions are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2002, Vol.195 (2), p.371-443
1. Verfasser: Souaifi, Sofiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that, on R n , every smooth function annihilated by a finite codimensional ideal in the algebra of constant coefficient differential operators, is a linear combination of polynomial exponential functions, P( x) e λ( x) , λ ∈ Hom( R n , C ). Furthermore, the polynomial functions are obtained by applying to the exponential functions e λ( x) some constant coefficient differential operator in the parameter λ. We generalize this fact to the reductive symmetric spaces' case, the role of the exponential functions being taken by the Eisenstein integrals.
ISSN:0022-1236
1096-0783
DOI:10.1006/jfan.2002.3973