Fonctions [formula omitted]( G/ H)-Finies sur un Espace Symétrique Réductif
It is well known that, on R n , every smooth function annihilated by a finite codimensional ideal in the algebra of constant coefficient differential operators, is a linear combination of polynomial exponential functions, P( x) e λ( x) , λ ∈ Hom( R n , C ). Furthermore, the polynomial functions are...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2002, Vol.195 (2), p.371-443 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that, on
R
n
, every smooth function annihilated by a finite codimensional ideal in the algebra of constant coefficient differential operators, is a linear combination of polynomial exponential functions,
P(
x)
e
λ(
x)
,
λ ∈ Hom(
R
n
,
C
). Furthermore, the polynomial functions are obtained by applying to the exponential functions
e
λ(
x)
some constant coefficient differential operator in the parameter
λ. We generalize this fact to the reductive symmetric spaces' case, the role of the exponential functions being taken by the Eisenstein integrals. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1006/jfan.2002.3973 |