Least Squares Methods to Minimize Errors in a Smooth, Strictly Convex Norm on [formula omitted]m

An algorithm for computing solutions of overdetermined systems of linear equations in n real variables which minimize the residual error in a smooth, strictly convex norm in a finite dimensional space is given. The algorithm proceeds by finding a sequence of least squares solutions of suitably modif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 1993, Vol.73 (2), p.180-198
Hauptverfasser: Owens, R.W., Sreedharan, V.P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An algorithm for computing solutions of overdetermined systems of linear equations in n real variables which minimize the residual error in a smooth, strictly convex norm in a finite dimensional space is given. The algorithm proceeds by finding a sequence of least squares solutions of suitably modified problems. Most of the time, each iteration involves one line search for the root of a nonlinear equation, though some iterations do not have any root seeking line search. Convergence of the algorithm is proved, and computational experience on some numerical examples is also reported.
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1993.1037