Numerical study of topological SQUIDs

We conducted numerical calculations to obtain the critical current as a function of the magnetic flux through the topologically trivial and non-trivial superconducting quantum interference devices (SQUIDs), with varying the capacitive and inductive couplings of Josephson junctions (JJs). Our calcula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:한국초전도·저온논문지 (구 한국초전도저온공학회논문지) 2022-12, Vol.24 (4), p.11-15
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We conducted numerical calculations to obtain the critical current as a function of the magnetic flux through the topologically trivial and non-trivial superconducting quantum interference devices (SQUIDs), with varying the capacitive and inductive couplings of Josephson junctions (JJs). Our calculation results indicate that a nontrivial SQUID is almost indistinguishable from trivial SQUID, considering the effective capacitance coupling. When the SQUID contains 2π- and 4π-periodic supercurrents, the periodicity of the current-flux relation can be distinguished from the purely trivial or nontrivial SQUID cases, and its difference is sensitive to the relative ratio between the topologically trivial and nontrivial supercurrents. We believe that our calculation results would provide a practical guide to quantitatively measure the portion of the topologically nontrivial supercurrents in experiments.
ISSN:1229-3008
DOI:10.9714/psac.2022.24.4.011