Layered Manufacturing: Challenges and Opportunities

Layered Manufacturing (LM) refers to computer-aided manufacturing processes in which parts are made in sequential layers relatively quickly. Parts that are produced by LM can be formed from a wide range of materials such as photosensitive polymers, metals and ceramics in sizes from a centimeter to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Cooper, Khershed P
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Layered Manufacturing (LM) refers to computer-aided manufacturing processes in which parts are made in sequential layers relatively quickly. Parts that are produced by LM can be formed from a wide range of materials such as photosensitive polymers, metals and ceramics in sizes from a centimeter to a few meters with sub-millimeter feature resolutions LM has found use in diverse areas including biomedical engineering, pharmaceuticals, aerospace, defense, electronics and design engineering. The promise of LM is the capability to make customized complex-shaped functional parts without specialized tooling and without assembly LM is still a few years away from fully realizing its promise but its potential for manufacturing remains high. A few of the fundamental challenges in materials processing confronting the community are improving the quality of the surface finish, eliminating residual stress, controlling local composition and microstructure, achieving fine feature size and dimensional tolerance and accelerating processing speed. Until these challenges are met, the applicability of LM and its commercialization will be restricted. Sustained scientific activity in LM has advanced over the past decade into many different areas of manufacturing and has enabled exploration of novel processes and development of hybrid processes. The research community of today has the opportunity to shape the future direction of science research to realize the full potential of LM. This article is from the Mat. Res. Soc. Symp. Proc. Vol. 758 p23-34, 2003. This article is from ADA417756 Materials Research Society Symposium Proceedings, Volume 758 Held in Boston, Massachusetts on December 3-5, 2002. Rapid Prototyping Technologies