Experimental Study of Super-Resolution Using a Compressive Sensing Architecture
An experimental investigation of super-resolution imaging from measurements of projections onto a random basis is presented. In particular, a laboratory imaging system was constructed following an architecture that has become familiar from the theory of compressive sensing. The system uses a digital...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An experimental investigation of super-resolution imaging from measurements of projections onto a random basis is presented. In particular, a laboratory imaging system was constructed following an architecture that has become familiar from the theory of compressive sensing. The system uses a digital micromirror array located at an intermediate image plane to introduce binary matrices that represent members of a basis set. The system model was developed from experimentally acquired calibration data which characterizes the system output corresponding to each individual mirror in the array. Images are reconstructed at a resolution limited by that of the micromirror array using the split Bregman approach to total-variation regularized optimization. System performance is evaluated qualitatively as a function of the size of the basis set, or equivalently, the number of snapshots applied in the reconstruction. |
---|