Study of Tropospheric Correction for Intercontinental GPS Common-View Time Transfer
Current practice is to incorporate general empirical models of the troposphere, which depend only on the station height and the elevation of the satellite, in GPS time receivers used for common-view time transfer. Comparisons of these models with a semi-empirical model based on weather measurements...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current practice is to incorporate general empirical models of the troposphere, which depend only on the station height and the elevation of the satellite, in GPS time receivers used for common-view time transfer. Comparisons of these models with a semi-empirical model based on weather measurements show differences of several nanoseconds. This paper reports on a study of tropospheric correction during GPS common-view time transfer over a short baseline of about 700 km, and three long baselines of 6400 km, 9000 km and 9600 km. It is shown that the use of a general empirical model of the troposphere within a region where the climate is similar does not affect time transfer by more than a few hundreds of picoseconds. For the long distance links, differences between the use of general empirical model and the use of a semi-empirical model reach several nanoseconds.
Presented at the Precise Time and Time Interval (PTTI) Applications and Planning Meeting (26th) held in Reston, VA, on 6-8 December 1994. Published in the Proceedings of the Precise Time and Time Interval (PTTI) Applications and Planning Meeting (26th), p320-332, December 1994. |
---|