Online Prediction under Model Uncertainty Via Dynamic Model Averaging: Application to a Cold Rolling Mill

We consider the problem of online prediction when it is uncertain what the best prediction model to use is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Raftery, Adrian E, Karny, Miroslav, Andrysek, Josef, Ettler, Pavel
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of online prediction when it is uncertain what the best prediction model to use is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the (correct) model to vary over time. The state space and Markov chain models are both specified in terms of forgetting, leading to a highly parsimonious representation. The method is applied to the problem of predicting the output strip thickness for a cold rolling mill, where the output is measured with a time delay. We found that when only a small number of physically motivated models were considered and one was clearly best, the method quickly converged to the best model, and the cost of model uncertainty was small; indeed DMA performed slightly better than the best physical model. When model uncertainty and the number of models considered were large, our method ensured that the penalty for model uncertainty was small. At the beginning of the process, when control is most difficult, we found that DMA over a large model space led to better predictions than the single best performing physically motivated model. Prepared in cooperation with the Department of Adaptive Systems, Institute of Information Theory and Automation (UTIA), Czech Academy of Sciences, Prague, Czech Republic and COMPUREG Plzen, s.r.o., Plzen, Czech Republic. This research was carried out while Raftery was visiting UTIA.