Multiecho Processing by an Echolocating Dolphin
Bottlenose dolphins (Tursiops truncatus) use short, wideband pulses for echolocation. Individual waveforms have high-range resolution capability but are relatively insensitive to range rate. Signal-to-noise ratio (SNR) is not greatly improved by pulse compression because each waveform has small time...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bottlenose dolphins (Tursiops truncatus) use short, wideband pulses for echolocation. Individual waveforms have high-range resolution capability but are relatively insensitive to range rate. Signal-to-noise ratio (SNR) is not greatly improved by pulse compression because each waveform has small time-bandwidth product. The dolphin, however, often uses many pulses to interrogate a target, and could use multipulse processing to combine the resulting echoes. Multipulse processing could mitigate the small SNR improvement from pulse compression, and could greatly improve range-rate estimation, moving target indication, range tracking, and acoustic imaging. All these hypothetical capabilities depend upon the animal's ability to combine multiple echoes for detection and/or estimation. An experiment to test multiecho processing in a dolphin measured detection of a stationary target when the number N of available target echoes was increased, using synthetic echoes. The SNR required for detection decreased as the number of available echoes increased, as expected for multiecho processing. A receiver that sums binary-quantized data samples from multiple echoes closely models the N dependence of the SNR required by the dolphin. Such a receiver has distribution-tolerant (nonparametric) properties that make it robust in environments with nonstationary and/or non-Gaussian noise, such as the pulses created by snapping shrimp.
Pub. in Jnl. of Acoutical Society of America, v114 n2, p1155-1166, Aug 2003. |
---|