Increasing Replayability with Deliberative and Reactive Planning

Opponent behavior in today's computer games is often the result of a static set of Artificial Intelligence (AI) behaviors or a fixed AI script. While this ensures that the behavior is reasonably intelligent, it also results in very predictable behavior. This can have an impact on the replayabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lent, Michael van, Riedl, Mark O, Carpenter, Paul, McAlinden, Ryan, Brobst, Paul
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Opponent behavior in today's computer games is often the result of a static set of Artificial Intelligence (AI) behaviors or a fixed AI script. While this ensures that the behavior is reasonably intelligent, it also results in very predictable behavior. This can have an impact on the replayability of entertainment-based games and the educational value of training-based games. This paper proposes a move away from static, scripted AI by using a combination of deliberative and reactive planning. The deliberative planning (or Strategic AI) system creates a novel strategy for the AI opponent before each gaming session. The reactive planning (or Tactical AI) system executes this strategy in real-time and adapts to the player and the environment. These two systems, in conjunction with a future automated director module, form the Adaptive Opponent Architecture. This paper describes the architecture and the details of the deliberative and reactive planning components. The original document contains color images.