Multi-Tethered Space-Based Interferometers: Particle System Model
Dynamics models are presented for a class of space-based interferometers comprised of multiple component bodies, interconnected in various arrangements, by low-mass flexible tethers of variable length. The tethered constellations are to perform coordinated rotational scanning accompanied by baseline...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dynamics models are presented for a class of space-based interferometers comprised of multiple component bodies, interconnected in various arrangements, by low-mass flexible tethers of variable length. The tethered constellations are to perform coordinated rotational scanning accompanied by baseline dimensional changes, as well as spin axis realignments and spin-up/spin-down maneuvers. The mechanical idealization is a system of N point masses interconnected by massless tethers of variable length. Both extensible and inextensible tethers are considered. Expressions for system angular and linear momenta are developed. The unrestricted nonlinear motion equations are derived via Lagranges equations. Rheonomic constraints are introduced to allow prescribed motion of any degrees of freedom, and the associated physical forces are determined. The linearized equations of motion are obtained for the steady rotation of a system with extensible tethers of constant unstrained length. |
---|