Computational Fluid Dynamics Modeling of Submunition Separation from Missile

Computational fluid dynamics calculations have been performed for a multi-body system consisting of a main missile and a number of submunitions. Numerical flow field computations have been made for various orientations and locations of submunitions using an unsteady, zonal Navier-Stokes code and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Edge, Harris L, Sahu, Jubaraj, Heavey, Karen R
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational fluid dynamics calculations have been performed for a multi-body system consisting of a main missile and a number of submunitions. Numerical flow field computations have been made for various orientations and locations of submunitions using an unsteady, zonal Navier-Stokes code and the chimera composite grid discretization technique at low supersonic speeds and 0 deg angle of attack. Steady state numerical results have been obtained and compared for cases modeling six submunitions in pitch-plane symmetry and ten submunitions for which symmetry could not be exploited. Computed results show the details of the expected flow field features including the shock interactions. Computed results are compared with limited experimental data obtained for the same configuration and conditions and are generally found to be in good agreement with the data. The results help to quantify changes in the aerodynamic forces and moments, which are attributable to changes in position of the submunitions relative to one another.