High Frequency Seismic Source Characteristics of Cavity Decoupled Underground Nuclear Explosions

The research investigated the high frequency characteristics of the seismic sources corresponding to cavity decoupled nuclear explosions and to assess the implications of these investigations with regard to the detection and discrimination of small decoupled explosions. This study has been carried o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Murphy, J R, Stevens, J L, Rimer, N
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The research investigated the high frequency characteristics of the seismic sources corresponding to cavity decoupled nuclear explosions and to assess the implications of these investigations with regard to the detection and discrimination of small decoupled explosions. This study has been carried out using a combination of deterministic simulations and analyses of empirical data recorded from selected cavity decoupled explosions. With regard to the deterministic simulations, a series of nonlinear finite difference calculations have been performed to simulate cavity decoupled explosions in unsaturated tuff and salt emplacement media. These simulations have confirmed the fact that the simple step pressure approximation is not valid at high frequencies and that the initial pressure spike on the cavity wall can induce significant nonlinear response. Preliminary analyses of high frequency seismic data recorded from the STERLING decoupled explosion in salt and the MILL YARD decoupled explosion in unsaturated tuff have provided evidence that the high frequency source components associated with the complex cavity pressure loadings do effectively couple into the seismic regime, in agreement with the predictions of the nonlinear finite difference simulations.