Poisson Approximation of Bernoulli Point Proceses and Their Superpositions, Via Coupling
A maximal coupling of a Bernoulli point process on an arbitrary compact space by a Poisson process is constructed. Exact computation of the variation distance between the probability laws follows as a consequence. For certain values of the parameters this coupling yields the optimal Poisson approxim...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A maximal coupling of a Bernoulli point process on an arbitrary compact space by a Poisson process is constructed. Exact computation of the variation distance between the probability laws follows as a consequence. For certain values of the parameters this coupling yields the optimal Poisson approximation of the given Bernoulli process. A procedure is derived for embedding a triangular array of Bernoulli processes within a single Poisson process; classical Poisson limit theorems are deduced. Keywords: Random variables. (Author) |
---|