The Lower Bounds on the Additive Complexity of Bilinear Problems in Terms of Some Algebraic Quantities
The lower bounds on the additive complexity of a bilinear problem are expressed in terms of the rank of the problem and also as a minimum number of elementary steps for the transformation of the identity matrix into a strongly regular one. Sponsored in part by Grant NSF-MCS77-23738. Prepared in coop...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lower bounds on the additive complexity of a bilinear problem are expressed in terms of the rank of the problem and also as a minimum number of elementary steps for the transformation of the identity matrix into a strongly regular one.
Sponsored in part by Grant NSF-MCS77-23738. Prepared in cooperation with Institute of Advanced Study, Princeton, NJ. |
---|