Apprenticeship Learning: Learning to Schedule from Human Experts
Coordinating agents to complete a set of tasks with intercoupled emporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this doma...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coordinating agents to complete a set of tasks with intercoupled emporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the one-expert, one-trainee apprenticeship model. However, a human domain expert often has difficulty describing their decision-making process, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state-space. We empirically demonstrate that this approach accurately learns multi-faceted heuristics on both a synthetic data set incorporating job-shop scheduling and vehicle routing problems and a real-world data set consisting of demonstrations of experts solving a variant of the weapon-to-target assignment problem. Our approach is able to learn scheduling policies of superior quality to those generated, on average, by human experts conducting an anti-ship missile defense task. |
---|