Stability of Difference Approximations to Differential Equations
Consider the diferential equation (1) x dor = f(x) in a Banach space and let x* be an equilibrium. The basic question treated is the following: if x* is asymptotically stable and if (2) x sub(K + 1) = (x sub K) +h phi (x sub k, h) is a one-step method, with fixed step size h, for integrating (1), th...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the diferential equation (1) x dor = f(x) in a Banach space and let x* be an equilibrium. The basic question treated is the following: if x* is asymptotically stable and if (2) x sub(K + 1) = (x sub K) +h phi (x sub k, h) is a one-step method, with fixed step size h, for integrating (1), then does the sequence x sub K converge to x*. It is shown that uniform asymptotic stability of (1) implies stability of (2) and that exponential asymptotic stability of (1) implies asymptotic stability of (2). |
---|