Value and prognostic impact of a deep learning segmentation model of COVID-19 lung lesions on low-dose chest CT
•Deep Learning (DL) pipeline, based on supervised convolutionnal neural networks achieve Dice coefficient of overall COVID-19 lesions on low-dose chest CT (ground-glass opacity and consolidation) of 0.75 ± 0.08 on low-dose computed tomography.•The developed pipeline computes clinical parameters: les...
Gespeichert in:
Veröffentlicht in: | Research in Diagnostic and Interventional Imaging (Online) 2022-03, Vol.1, p.100003-100003, Article 100003 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Deep Learning (DL) pipeline, based on supervised convolutionnal neural networks achieve Dice coefficient of overall COVID-19 lesions on low-dose chest CT (ground-glass opacity and consolidation) of 0.75 ± 0.08 on low-dose computed tomography.•The developed pipeline computes clinical parameters: lesion volume (cm3) and extend (%). Lesion extent automatic quantification had a mean absolute error of 2.1% ± 2.4 with good correlation to manual ground-truth reference (r = 0.947: p |
---|---|
ISSN: | 2772-6525 2772-6525 |
DOI: | 10.1016/j.redii.2022.100003 |